Uran

Uran (latinsky Uranus) je sedmá planeta od Slunce, třetí největší a čtvrtá nejhmotnější planeta ve sluneční soustavě. Řadí se mezi plynné obry a společně s Neptunem i mezi tzv. ledové obry. Jméno má po řeckém bohu Úranovi, bohu nebes. Symboly planety Uran je znak ♅ (užívaný v astrologii) nebo Astronomický symbol Uranu (užívaný v astronomii). I přes to, že je možné Uran za příznivých podmínek pozorovat pouhým okem na noční obloze, nebyl antickými astronomy rozpoznán jako planeta, ale byl považován za hvězdu kvůli pomalé rychlosti a slabé záři.[1] Objev Uranu ohlásil William Herschel 13. března 1781, čímž poprvé v moderní době posunul známé hranice sluneční soustavy. Chemickým složením se Uran podobá Neptunu. Obě planety mají rozdílné zastoupení plynů oproti Jupiteru či Saturnu. Přesto je atmosféra Uranu složením podobná atmosféře Jupiteru či Saturnu. Tvoří ji převážně plynné formy vodíku a hélia, ale obsahuje i výrazný podíl vody, čpavku či metanu se stopami uhlovodíků.[2] Atmosféra Uranu je nejchladnější atmosférou ve sluneční soustavě, minimální teploty se pohybují okolo −224 °C. Její struktura je vrstevnatá: v nejnižších patrech se nacházejí mraky vody, ve svrchních patrech mraky tvořené především metanem.[2] Sama planeta je nejspíše složena především z ledu a kamení.[3] Podobně jako další plynné planety má i Uran planetární prstence, magnetosféru a obíhá ho řada měsíců. Zvláštností Uranu je sklon jeho rotační osy: osa leží téměř v rovině, ve které planeta obíhá. Severní a jižní pól se proto nacházejí v oblastech, jež jsou u jiných planet charakteristické pro rovník.[4] Při pohledu ze Země se proto občas stane, že se prstence Uranu jeví jako terč s Uranem ve středu. Když v roce 1986 kolem Uranu proletěla sonda Voyager 2, nepozorovala v atmosféře planety žádné větší množství mračen a bouřkových systémů, což je typické pro jiné plynné obry.[4] Pozemská pozorování však přinesla náznaky sezónních změn počasí, s čímž souvisí i větry vanoucí v atmosféře. Ty mohou dosahovat rychlosti až 900 km/h.[5]

Předpokládá se, že Uran vznikl stejným procesem jako Jupiter z protoplanetárního disku před 4,6 až 4,7 miliardami let. Existují dvě hlavní teorie, jak mohly velké plynné planety vzniknout a zformovat se do současné podoby: teorie akrece[6] a teorie gravitačního kolapsu.[7] Teorie akrece předpokládá, že se v protoplanetárním disku postupně slepovaly drobné prachové částice, čímž začaly vznikat větší částice a posléze balvany. Neustálé srážky těles vedly k jejich narůstání, až vznikla tělesa o velikosti několik tisíc kilometrů. Tato velká železokamenitá tělesa se stala zárodky terestrických planet. Předpokládá se, že podobná tělesa mohla vzniknout i ve vzdálenějších oblastech sluneční soustavy, kde vlivem velké gravitace začala strhávat do svého okolí plyn a prach, který se postupně začal nabalovat na pevné jádro, až planeta dorostla do dnešní velikosti.[8] Teorie gravitačního kolapsu na druhou stranu předpokládá, že velké planety nevznikaly postupným slepováním drobných částic, ale poměrně rychlým smrštěním z nahuštěného shluku v zárodečném disku podobným způsobem, který je znám při vzniku hvězd. Podle teorie několika gravitačních kolapsů, jejímž autorem je Alan Boss z Carnegie Institution of Washington, byl vznik plynných obrů krátký a v případě Uranu trval jen několik století.[7] Je pravděpodobné, že Uran nevznikl na současném místě, protože v této vzdálenosti od Slunce zřejmě nebylo v době formování planet dostatečné množství zárodečného materiálu. Jeho zrod (ať akrecí nebo gravitačním kolapsem) proto proběhl blíže ke Slunci a Uran pak postupně migroval do své současné polohy.[9]

Vnitřní teplo Uranu se zdá být značně menší než je obvyklé pro ostatní plynné obry, hovoří se o nízkém tepelném toku.[5][16] Proč je vnitřní teplota Uranu tak nízká, nebylo stále dostatečně vysvětleno. Neptun, který je velikostí a složením velmi podobný Uranu, vyzařuje do okolí 2,61krát více energie než dostává od Slunce.[5] Uran oproti tomu nevyzařuje do okolí skoro žádnou energii navíc. Celková vyzářená energie Uranu v infračervené (tepelné) části spektra je 1,06 ± 0,08 násobek sluneční energie absorbované v jeho atmosféře.[2][17] Tepelný tok Uranu je pouze 0,042 ± 0,047 W/m², což je méně než tepelný tok Země, který dosahuje 0,075 W/m².[17] Současně nejmenší zaznamenaná teplota 49 K (−224 °C) v Uranově tropopauze dělá z Uranu nejchladnější planetu ve sluneční soustavě.[2][17] Hypotézy vysvětlující tento jev pracují například s myšlenkou superhmotné srážky Uranu s jiným tělesem, která měla za výsledek převrácení sklonu rotační osy planety, což mohlo vést ke ztrátě většiny primárního tepla a ochlazení jádra.[18] Jiná hypotéza předpokládá, že uvnitř Uranu existuje vrstva či vrstvy bránící proudění tepla od jádra k povrchu.[3] Konvekce (přenos tepla prouděním hmoty) by tak probíhala mezi vrstvami různého složení, které by účinně bránily výstupu teplého materiálu směrem k povrchu.[2][17] Atmosféra Podrobnější informace naleznete v článku Atmosféra Uranu. Uran je nejchladnější planetou sluneční soustavy. Teplota jeho atmosféry dosahuje jen 53 K (−220 °C);[9] nejnižší teplota změřená v tropopauze byla pouze 49 K.[2][17] Kvůli výraznému odklonu rotační osy přijímají polární oblasti od Slunce mnohem více energie než rovníkové oblasti. Přesto je teplota v oblasti rovníku stejná jako na pólech. Mechanismus způsobující tento jev není dosud známý. Ví se pouze, že v atmosféře vane velmi silný vítr rychlostí až 900 km/h. Vzhled atmosféry Uranu je většinu času jednolitý bez znatelné struktury jak ve viditelném, tak i ultrafialovém spektru. Je to způsobeno pravděpodobně tím, že Uran nemá téměř žádné zdroje vnitřního tepla ve srovnání s jinými plynnými obry, a tak dynamika atmosféry je velice slabá. Na snímcích sondy Voyager 2 bylo zjištěno deset nevýrazných světlých skvrn, které byly později pozorovány i Hubbleovým teleskopem[10] a byly později interpretovány jako mračna.[4][19] Složení Atmosféru Uranu tvoří převážně molekulární vodík a helium.[2] Molekulární podíl helia, tj. podíl počtu atomů helia vůči počtu molekul všech plynů, je 0,15 ± 0,03[20] ve svrchní troposféře, což odpovídá hmotnostnímu podílu helia 0,26 ± 0,05.[2][17] Tato hodnota je velmi blízká množství hélia v protohvězdách (0,275 ± 0,01),[21] což naznačuje, že se hélium nesoustředilo do středu planety jako u jiných plynných obrů.[2] Třetí nejčetnější komponenta atmosféry Uranu je metan (CH4),[2] který způsobuje absorpci viditelného a infračerveného světla projevující se typickou namodralou barvou.[2] Pod metanovou vrstvou mraků, tedy nad hladinou tlaku 1,3 bar (130 kPa), tvoří molekuly metanu 2,3 % molárního podílu atmosféry. To představuje 20krát až 30krát větší podíl uhlíku, než se vyskytuje ve Slunci.[2][22][23] Poměrné zastoupení[pozn. 2] je mnohem nižší ve svrchní atmosféře kvůli extrémně nízké teplotě, která snižuje míru nasycení a způsobuje mrznutí nadbytečného metanu.[24] Zastoupení lehkých těkavých látek jako čpavku, vody či sulfanu ve spodní atmosféře není známo, bude však pravděpodobně taktéž vyšší, než je typické pro Slunce.[2][25] Kromě metanu se ve stratosféře Uranu vyskytují i další uhlovodíky, u kterých se předpokládá, že vznikly jako výsledek chemického rozkladu metanu vyvolaného slunečním ultrafialovým světlem.[26] Jsou to například látky jako etan (C2H6), acetylén (C2H2), metylacetylén (CH3C2H) či diacetylén (C2HC2H).[24][27][28] Spektroskopická měření taktéž detekovala stopy vodní páry, oxidu uhelnatého a oxidu uhličitého ve svrchní části atmosféry, které mohou pocházet pouze z externích zdrojů jako jsou komety či meziplanetární prach.[27][28][29]

Copyright Ligma studios ©